The PhD program in Astronomy and Planetary Science prepares a student to work as an academic, government, or industrial research in astronomy or planetary science. Each student completes an eight-course core curriculum and works on an original research project under the direction of a faculty member. Research work culminates in an oral presentation and a dissertation.
Students graduating with a PhD in Astronomy and Planetary Science are equipped to work in many areas of science, research, and teaching. Depending on the skills emphasized in a personalized program of study, students can choose to pursue careers in higher education, government laboratory facilities, technology, and/or industry.
To receive a Doctor of Philosophy Degree (PhD) at Northern Arizona University, you must complete a planned group of courses, from one or more disciplines, ranging from at least 60 - 109 units of graduate-level courses. Most plans require research, a dissertation, and comprehensive exams. All plans have residency requirements regarding time spent on the Flagstaff campus engaged in full-time study.
The full policy can be viewed here.
In addition to University Requirements:
You may be able to use some courses to meet more than one requirement. Contact your advisor for details.
Minimum Units for Completion | 60 |
Additional Admission Requirements | Required |
Dissertation | Dissertation is required. |
Comprehensive Exam | Comprehensive Exam is required. |
Oral Defense | Oral Defense is required. |
Research | Individualized research is required. |
Purpose Statement
The PhD program in Astronomy and Planetary Sciences is designed to provide students with a broad technical understanding of the dominant physical, chemical, and geological processes that control stellar and planetary systems while requiring students to have and present detailed mastery of their specific research topic within the field of astronomy and planetary science.
The PhD program in Astronomy and Planetary Sciences leverages state-of-the-art resources found in Arizona, and especially one of a kind facilities near Flagstaff, to deliver a unique and distinct graduate education that cannot be found in Arizona’s other state universities. The Department of Physics and Astronomy will partner with Lowell Observatory, United States Geological Survey (USGS) Astrogeology Science Center, United States Naval Observatory, and the Naval Research Laboratory, as well as the Discovery Channel Telescope (DCT) and the Naval Precision Optical Interferometer (NPOI), all in or near Flagstaff. This program also capitalizes on the wide range of nearby geologic environments (including Meteor Crater) to enable terrestrial and analog planetary science investigations
Students will build skills and knowledge through formal coursework and an original research project. Core coursework will focus on the development of essential skills PhD astronomers and planetary scientists need upon entering the workforce in an academic or industrial setting (instrument design and fabrication, optical design, computational approaches, big data, remote sensing, and/or techniques of observational astronomy). These courses will focus on advanced topics in astronomy and planetary science that students need for a solid foundation upon which to build their own postdoctoral research (formation and evolution of solar systems, atmospheres, interiors, and surfaces of planetary bodies, astro-chemistry, exoplanet science, and other topics). In addition, students will perform their own original research, write a dissertation, and make an oral, public presentation of their results. In the original research component, students will learn how to collect and analyze data, write up their results, and communicate their results to others in a manner consistent with professional standards in the astronomical and planetary science communities.
Students entering the PhD program in Astronomy and Planetary Sciences typically have an undergraduate degree in physics, astronomy, geology, chemistry, or similar field. Upon completing their PhD, students are likely to pursue teaching, research, technical jobs in industry or at research facilities, or similar professional opportunities that require PhD-level knowledge, tools, and experience.
Student Learning Outcomes
The PhD program in Astronomy and Planetary Science is designed to prepare students to carry out original research in the private sector, government facilities, or academia. Learning outcomes for all students include the following technical topics:
The NAU graduate online application is required for all programs. Admission to many graduate programs is on a competitive basis, and programs may have higher standards than those established by the Office of Graduate and Professional Studies.
Admission requirements include the following:
Visit the NAU Graduate Admissions website for additional information about graduate school application deadlines, eligibility for study, and admissions policies.
Ready to apply? Begin your application now.
International applicants have additional admission requirements. Please see the International Graduate Admissions Policy.
Individual program admission requirements over and above admission to NAU are required.
This Doctoral degree requires 60 units distributed as follows:
Take the following 60 units:
Electives Appropriate to Research (33 units)
At least 12 units must be formal graded courses.
Dissertation (15 units)
Be aware that some courses may have prerequisites that you must also successfully complete. For prerequisite information, click on the course or see your advisor.